论文标题

迈向从软件生成的点云中提取平面取向的自动系统

Towards an Automatic System for Extracting Planar Orientations from Software Generated Point Clouds

论文作者

Kissi-Ameyaw, J., McIsaac, K., Wang, X., Osinski, G. R.

论文摘要

在地质学中,关键活动是使用平面定向测量值(例如打击,倾角和倾斜方向)的地质结构(表面形成拓扑和岩石单元)的表征。通常,这些测量是使用基本设备手动收集的;通常是指南针/诊所和篮板,手工记录在地图上。为了自动化此过程并更新这些类型的测量结果的收集范式,已利用各种计算技术和技术(例如LIDAR)。通过从输入图像中生成点云来重建场景和对象的结构等技术,并在Decimetre量表上进行详细的重建。 SFM型技术在更多样化的环境条件下的成本和可用性领域具有优势,同时牺牲了极端的数据保真度。此处介绍了一种数据采集和基于机器学习的软件系统的方法:地理结构,开发,旨在自动化方向测量的测量。该方法没有使用应用于输入图像的方法来得出测量,而是直接从重建点云表面进行测量。使用Mahalanobis距离实现来减轻点云噪声。使用K-Neart最邻居区域生长算法来表征显着的结构,并使用平面和正常方向余弦来定量最终的表面取向。

In geology, a key activity is the characterisation of geological structures (surface formation topology and rock units) using Planar Orientation measurements such as Strike, Dip and Dip Direction. In general these measurements are collected manually using basic equipment; usually a compass/clinometer and a backboard, recorded on a map by hand. Various computing techniques and technologies, such as Lidar, have been utilised in order to automate this process and update the collection paradigm for these types of measurements. Techniques such as Structure from Motion (SfM) reconstruct of scenes and objects by generating a point cloud from input images, with detailed reconstruction possible on the decimetre scale. SfM-type techniques provide advantages in areas of cost and usability in more varied environmental conditions, while sacrificing the extreme levels of data fidelity. Here is presented a methodology of data acquisition and a Machine Learning-based software system: GeoStructure, developed to automate the measurement of orientation measurements. Rather than deriving measurements using a method applied to the input images, such as the Hough Transform, this method takes measurements directly from the reconstructed point cloud surfaces. Point cloud noise is mitigated using a Mahalanobis distance implementation. Significant structure is characterised using a k-nearest neighbour region growing algorithm, and final surface orientations are quantified using the plane, and normal direction cosines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源