论文标题
在对话中识别情感原因
Recognizing Emotion Cause in Conversations
论文作者
论文摘要
我们解决了在对话中识别情绪原因,定义此问题的两个新颖子任务的问题,并提供相应的对话级数据集以及强大的基于变压器的基线。该数据集可从https://github.com/declare-lab/reccon获得。 简介:认识到文本中情绪背后的原因是NLP研究的基本但探索的研究领域。该领域的进步具有改善基于情感模型的可解释性和绩效的潜力。由于对话者之间的动态混合,在对话中确定情感原因在对话中的话语层面尤其具有挑战性。 方法:我们介绍了与随附的名为reccon的随附的数据集对话中识别情绪原因的任务,其中包含1,000多个对话和10,000个话语原因对。此外,我们根据原因的来源定义不同的原因类型,并建立强大的基于变压器的基线来解决该数据集上的两个不同子任务:因果跨度提取和因果情绪的需要。 结果:我们基于变压器的基线,利用上下文预训练的嵌入(例如罗伯塔)优于最先进的情感导致提取方法 结论:我们引入了一项与(可解释的)情绪感知人工智能高度相关的新任务:在对话中识别情感原因,为这项任务提供了一个新的高度挑战性公开可用的对话级数据集,并在该数据集中提供强大的基线结果。
We address the problem of recognizing emotion cause in conversations, define two novel sub-tasks of this problem, and provide a corresponding dialogue-level dataset, along with strong Transformer-based baselines. The dataset is available at https://github.com/declare-lab/RECCON. Introduction: Recognizing the cause behind emotions in text is a fundamental yet under-explored area of research in NLP. Advances in this area hold the potential to improve interpretability and performance in affect-based models. Identifying emotion causes at the utterance level in conversations is particularly challenging due to the intermingling dynamics among the interlocutors. Method: We introduce the task of Recognizing Emotion Cause in CONversations with an accompanying dataset named RECCON, containing over 1,000 dialogues and 10,000 utterance cause-effect pairs. Furthermore, we define different cause types based on the source of the causes, and establish strong Transformer-based baselines to address two different sub-tasks on this dataset: causal span extraction and causal emotion entailment. Result: Our Transformer-based baselines, which leverage contextual pre-trained embeddings, such as RoBERTa, outperform the state-of-the-art emotion cause extraction approaches Conclusion: We introduce a new task highly relevant for (explainable) emotion-aware artificial intelligence: recognizing emotion cause in conversations, provide a new highly challenging publicly available dialogue-level dataset for this task, and give strong baseline results on this dataset.