论文标题

有多少人被感染?奥地利SARS-COV-2患病率的案例研究

How many people are infected? A case study on SARS-CoV-2 prevalence in Austria

论文作者

Ziegler, Gabriel

论文摘要

使用自愿质量测试的最新数据,我在2020年12月上旬为奥地利县的SARS-COV-2流行提供了可靠的界限。当估计患病率时,出现了自然缺失的数据问题:未经测试的人没有产生测试结果。此外,测试并不能完全预测潜在的感染。这与质量SARS-COV-2测试尤其重要,因为这些测试是通过快速抗原测试进行的,该测试已知有些不精确。使用有关部分身份证明的文献的见解,我提出了一个框架,立即解决这两个问题。我使用该框架来研究奥地利数据的不同选择假设。尽管弱单调选择假设提供有限的识别能力,但相当强大的假设显着降低了患病率的不确定性。

Using recent data from voluntary mass testing, I provide credible bounds on prevalence of SARS-CoV-2 for Austrian counties in early December 2020. When estimating prevalence, a natural missing data problem arises: no test results are generated for non-tested people. In addition, tests are not perfectly predictive for the underlying infection. This is particularly relevant for mass SARS-CoV-2 testing as these are conducted with rapid Antigen tests, which are known to be somewhat imprecise. Using insights from the literature on partial identification, I propose a framework addressing both issues at once. I use the framework to study differing selection assumptions for the Austrian data. Whereas weak monotone selection assumptions provide limited identification power, reasonably stronger assumptions reduce the uncertainty on prevalence significantly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源