论文标题

QuickTumornet:快速自动自动多级分割脑肿瘤

QuickTumorNet: Fast Automatic Multi-Class Segmentation of Brain Tumors

论文作者

Maas, Benjamin, Zabeh, Erfan, Arabshahi, Soroush

论文摘要

诸如磁共振成像(MRI)之类的非侵入性技术被广泛用于脑肿瘤诊断。但是,从3D MRI体积中对脑肿瘤进行手动分割是一项耗时的任务,需要训练有素的专家放射科医生。由于手动分割的主观性,评估者间的可靠性较低,这可能导致诊断差异。由于许多脑肿瘤治疗的成功取决于早期干预,因此早期检测至关重要。在这种情况下,有必要作为脑肿瘤分割的全自动分割方法作为脑肿瘤检测和定量的有效且可靠的方法。在这项研究中,我们提出了一种用于脑肿瘤分割的端到端方法,并利用了修改版的QuickNat,QuickNat,QuickNat,QuickNat,一种脑组织类型分割深卷积神经网络(CNN)。我们的方法对233例患者T1加权图像的数据集进行了评估,该图像包含三个注释的肿瘤类型类(脑膜瘤,神经胶质瘤和垂体)。我们的模型QuickTumornet展示了快速,可靠和准确的脑肿瘤分割,可用于协助临床医生进行诊断和治疗。

Non-invasive techniques such as magnetic resonance imaging (MRI) are widely employed in brain tumor diagnostics. However, manual segmentation of brain tumors from 3D MRI volumes is a time-consuming task that requires trained expert radiologists. Due to the subjectivity of manual segmentation, there is low inter-rater reliability which can result in diagnostic discrepancies. As the success of many brain tumor treatments depends on early intervention, early detection is paramount. In this context, a fully automated segmentation method for brain tumor segmentation is necessary as an efficient and reliable method for brain tumor detection and quantification. In this study, we propose an end-to-end approach for brain tumor segmentation, capitalizing on a modified version of QuickNAT, a brain tissue type segmentation deep convolutional neural network (CNN). Our method was evaluated on a data set of 233 patient's T1 weighted images containing three tumor type classes annotated (meningioma, glioma, and pituitary). Our model, QuickTumorNet, demonstrated fast, reliable, and accurate brain tumor segmentation that can be utilized to assist clinicians in diagnosis and treatment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源