论文标题
在TW hya周围的原星盘中对氮分馏进行建模:谷物种群和碳与氧气元素丰度比的模型限制
Modeling Nitrogen Fractionation in the Protoplanetary Disk around TW Hya: Model Constraints on Grain Population and Carbon-to-Oxygen Elemental Abundance Ratio
论文作者
论文摘要
使用Atacama大毫米/亚毫米阵列进行的观测,在TW hya周围的原球盘上进行了观测,显示HCN分子在HC $^{14} $ n/hc $^{15} $ n $ n $ \ sim $ 120中以$ \ sim $ \ sim $ \ sim $ \ sim $ \ sim $ 120。在这项研究中,我们研究了控制这种氮分馏过程的物理和化学条件。为此,开发了一种新的磁盘模型,其中纳入了N $ _2 $的同位素选择性光解离并结合了同位素交换化学反应。当气相碳和氧的元素丰度相对于星际培养基中的碳和氧的元素比氧气更丰富时,我们的模型可以成功地再现观察到的HCN柱密度的耗尽时([C/O] $ _ {\ rm elem}> $ 1)。 N $ _2 $的同位素选择性光解离是我们模型中的主要氮分馏过程。观察到的HC $^{14} $ n/hc $^{15} $ n比率也可以通过模型来复制,假设外部磁盘大气中的小尘土谷物比内磁盘中的小灰尘粒耗尽了。这与谷物演化模型一致,根据该模型,由于径向从外部磁盘径向漂移的大尘土的破碎,在内部磁盘中连续补充了小尘土晶粒。
Observations conducted using the Atacama Large Millimeter/submillimeter Array on the protoplanetary disk around TW Hya show the nitrogen fractionation of HCN molecules in HC$^{14}$N/HC$^{15}$N $\sim$120 at a radius of $\sim$20 AU. In this study, we investigated the physical and chemical conditions that control this nitrogen fractionation process. To this end, a new disk model was developed, in which the isotope-selective photodissociation of N$_2$ and isotope-exchange chemical reactions have been incorporated. Our model can successfully reproduce the observed HCN column density when the elemental abundances of the gas-phase carbon and oxygen are depleted by two orders of magnitude relative to those in the interstellar medium and carbon is more abundant than oxygen ([C/O]$_{\rm elem}>$ 1). The isotope-selective photodissociation of N$_2$ is the dominant nitrogen fractionation process in our models. The observed HC$^{14}$N/HC$^{15}$N ratio, which increases outwards, can also be reproduced by the model by assuming that the small dust grains in the atmosphere of the outer disk are depleted more than those in the inner disk. This is consistent with grain evolution models, according to which small dust grains are continuously replenished in the inner disk due to fragmentation of the large dust grains that radially drift from the outer disk.