论文标题

关于弯曲位错的动力学

On the dynamics of curved dislocation ensembles

论文作者

Groma, István, Ispánovity, Péter Dusán, Hochrainer, Thomas

论文摘要

为了发展基于位错的统计连续性晶体可塑性理论是材料科学的主要挑战。在过去的二十年中,这种理论是在平行边缘错位系统的时间演变中开发出来的。进化方程是通过单个错位运动方程的系统粗粒来得出的,后来从位错密度的功能和应力潜力中检索到了通过应用相场理论的标准形式主义。但是,如果可以为弯曲的错位系统建立类似的程序,那将是一个长期存在的问题。最近,通过基于密度的运动曲线的运动学理论建立了这种理论的重要先决条件。在本文中,提出了一种方法,是在单个滑移情况下系统地推导弯曲位错系统动力学的方法。为了降低问题的复杂性,应用了偶极子类似于方向依赖性密度变量的近似值。这导致了总脱位密度,GND密度和所谓曲率密度的一组封闭的运动学演化方程。与边缘错位模型的结果方程的类比使人们可以概括相位形式主义并获得一组封闭的动态演化方程。

To develop a dislocation-based statistical continuum theory of crystal plasticity is a major challenge of materials science.During the last two decades such a theory has been developed for the time evolution of a system of parallel edge dislocations. The evolution equations were derived by a systematic coarse-graining of the equations of motion of the individual dislocations and later retrieved from a functional of the dislocation densities and the stress potential by applying the standard formalism of phase field theories. It is, however, a long standing issue if a similar procedure can be established for curved dislocation systems. An important prerequisite for such a theory has recently been established through a density-based kinematic theory of moving curves. In this paper, an approach is presented for a systematic derivation of the dynamics of systems of curved dislocations in a single slip situation. In order to reduce the complexity of the problem a dipole like approximation for the orientation dependent density variables is applied. This leads to a closed set of kinematic evolution equations of total dislocation density, the GND densities, and the so-called curvature density. The analogy of the resulting equations with the edge dislocation model allows one to generalize the phase field formalism and to obtain a closed set of dynamic evolution equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源