论文标题
线性保罗陷阱中的径向二维离子晶体
Radial two-dimensional ion crystals in a linear Paul trap
论文作者
论文摘要
我们在线性Paul陷阱的“ radial-2d”阶段中实验研究了二维(2D)库仑晶体。该阶段是通过完全与径向平面对齐的2D离子晶格来识别的,并通过施加较大的轴向与径向捕获电位而产生。使用高达19 $^{171} $ yb $^+$ ions的阵列,我们证明了此类晶体的结构相位边界和振动模式频率,尽管伪电位近似很好地描述了,尽管时间依赖性的离子位置由固有的微动位。我们进一步观察到,微动诱导的径向-2D晶体的加热仅限于径向平面。最后,我们验证在大多数离子陷阱量子模拟方案中使用的横向运动模式在该几何形状中保持脱钩和冷。我们的结果建立了径向2D离子晶体,作为实现量子模拟和计算中各种理论建议的强大实验平台。
We experimentally study two-dimensional (2D) Coulomb crystals in the "radial-2D" phase of a linear Paul trap. This phase is identified by a 2D ion lattice aligned entirely with the radial plane and is created by imposing a large ratio of axial to radial trapping potentials. Using arrays of up to 19 $^{171}$Yb$^+$ ions, we demonstrate that the structural phase boundaries and vibrational mode frequencies of such crystals are well-described by the pseudopotential approximation, despite the time-dependent ion positions driven by intrinsic micromotion. We further observe that micromotion-induced heating of the radial-2D crystal is confined to the radial plane. Finally, we verify that the transverse motional modes, which are used in most ion-trap quantum simulation schemes, remain decoupled and cold in this geometry. Our results establish radial-2D ion crystals as a robust experimental platform for realizing a variety of theoretical proposals in quantum simulation and computation.