论文标题
输入驱动网络的非平衡热力学
Nonequilibrium thermodynamics of input-driven networks
论文作者
论文摘要
基于能量的模型的神经动力学受能量最小化的控制,当系统达到平衡时,将检索网络中存储的模式。但是,当系统由时间变化的外部输入驱动时,这种物理系统的非平衡过程尚未得到很好的表征。在这里,我们研究了吸引人的神经网络,特别是Hopfield网络,该网络是由时间变化的外部输入驱动的,并测量了两个集体状态之间的轨迹沿轨迹的热力学数量。根据骗子的预测,沿两个状态之间的平衡自由能差异,正向轨迹的分布与沿非平衡轨迹的逆转工作之间的重叠与平衡的自由能差一致。我们研究具有不同刺激方案和神经网络约束的条件。我们进一步讨论生物学上合理的突触连接和信息处理如何在这个非平衡框架中发挥作用。这些结果表明,非平衡热力学如何与神经计算相关,并与闭环动态扰动连接到最近的系统神经科学研究。
Neural dynamics of energy-based models are governed by energy minimization and the patterns stored in the network are retrieved when the system reaches equilibrium. However, when the system is driven by time-varying external input, the nonequilibrium process of such physical system has not been well characterized. Here, we study attractor neural networks, specifically the Hopfield network, driven by time-varying external input and measure thermodynamic quantities along trajectories between two collective states. The overlap between distribution of the forward and reversal work along the nonequilibrium trajectories agrees with the equilibrium free energy difference between two states, following the prediction of Crooks fluctuation theorem. We study conditions with different stimulation protocol and neural network constraints. We further discuss how biologically plausible synaptic connections and information processing may play a role in this nonequilibrium framework. These results demonstrate how nonequilibrium thermodynamics can be relevant for neural computation and connect to recent systems neuroscience studies with closed-loop dynamic perturbations.