论文标题
塞萨罗收敛的表征
A Characterization of Cesaro Convergence
论文作者
论文摘要
我们表明,当$ [α^k,α^k,α^k {k+1})中的平均序列时,真实有限的序列$(x_n)$是cesàRo收敛到$ \ ell $。此外,如果序列$(x_n)$是非负的,则它是cesàro收敛到$ 0 $时,并且仅当相同条件适用于某些$α> 1 $时。
We show that a real bounded sequence $(x_n)$ is Cesàro convergent to $\ell$ if and only if the sequence of averages with indices in $[α^k,α^{k+1})$ converges to $\ell$ for all $α>1$. If, in addition, the sequence $(x_n)$ is nonnegative, then it is Cesàro convergent to $0$ if and only if the same condition holds for some $α>1$.