论文标题

重组与预测:基于自动编码器的离散事件的新型异常检测

Recomposition vs. Prediction: A Novel Anomaly Detection for Discrete Events Based On Autoencoder

论文作者

Yuan, Lun-Pin, Liu, Peng, Zhu, Sencun

论文摘要

在入侵检测领域,最具挑战性的问题之一是离散事件日志的异常检测。尽管大多数早期的工作都致力于应用无监督的学习对工程功能,但最近的工作已经开始通过应用深度学习方法来抽象离散事件条目来解决这一挑战。受到自然语言处理的启发,提出了基于LSTM的异常检测模型。他们试图预测即将发生的事件,并在预测未达到某个标准时提高异常警报。但是,这种预测的隔离事件方法具有基本限制:事件预测可能无法完全利用序列的独特特征。这种限制会导致高误报(FPS)和高误报(FNS)。检查序列的结构和单个事件之间的双向因果关系也至关重要。为此,我们提出了一种新的方法:将事件序列作为异常检测进行重新编造。我们提出了Dablog,这是一种基于自动编码器的Deep AutoCoder检测方法,用于离散事件日志。基本差异是,我们的方法不是预测即将发生的事件,而是通过分析(编码)和重建(解码)给定序列来决定序列是正常的还是异常的。我们的评估结果表明,我们的新方法可以显着减少FPS和FNS的数量,从而获得更高的$ F_1 $得分。

One of the most challenging problems in the field of intrusion detection is anomaly detection for discrete event logs. While most earlier work focused on applying unsupervised learning upon engineered features, most recent work has started to resolve this challenge by applying deep learning methodology to abstraction of discrete event entries. Inspired by natural language processing, LSTM-based anomaly detection models were proposed. They try to predict upcoming events, and raise an anomaly alert when a prediction fails to meet a certain criterion. However, such a predict-next-event methodology has a fundamental limitation: event predictions may not be able to fully exploit the distinctive characteristics of sequences. This limitation leads to high false positives (FPs) and high false negatives (FNs). It is also critical to examine the structure of sequences and the bi-directional causality among individual events. To this end, we propose a new methodology: Recomposing event sequences as anomaly detection. We propose DabLog, a Deep Autoencoder-Based anomaly detection method for discrete event Logs. The fundamental difference is that, rather than predicting upcoming events, our approach determines whether a sequence is normal or abnormal by analyzing (encoding) and reconstructing (decoding) the given sequence. Our evaluation results show that our new methodology can significantly reduce the numbers of FPs and FNs, hence achieving a higher $F_1$ score.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源