论文标题

奖章:医学缩写歧义歧义数据集用于自然语言理解的预科

MeDAL: Medical Abbreviation Disambiguation Dataset for Natural Language Understanding Pretraining

论文作者

Wen, Zhi, Lu, Xing Han, Reddy, Siva

论文摘要

禁止在临床环境中使用许多当前NLP方法的最大挑战之一是公共数据集的可用性。在这项工作中,我们提出了奖牌,这是一个策划缩写歧义的大型医学文本数据集,旨在自然语言理解医学领域的预训练。我们预先训练了该数据集上的几种常见架构模型,并经验表明,这种预训练会导致在下游医疗任务进行微调时提高性能和收敛速度。

One of the biggest challenges that prohibit the use of many current NLP methods in clinical settings is the availability of public datasets. In this work, we present MeDAL, a large medical text dataset curated for abbreviation disambiguation, designed for natural language understanding pre-training in the medical domain. We pre-trained several models of common architectures on this dataset and empirically showed that such pre-training leads to improved performance and convergence speed when fine-tuning on downstream medical tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源