论文标题

大$ n $ $ su(n)$ yang-mills理论和较轻的拓扑结冰

Large-$N$ $SU(N)$ Yang-Mills theories with milder topological freezing

论文作者

Bonanno, Claudio, Bonati, Claudio, D'Elia, Massimo

论文摘要

我们使用平行的回火方案模拟了$ 4D $ $ $ $ $ $ $ $ $ $ N $,该理论将模拟与开放和周期性的边界条件相结合,实施了Martin Hasenbusch最初提出的算法,以$ 2D $ $ $ $ CP^{N-1} $模型。这可以极大地抑制具有标准本地算法的拓扑结冰,从而将自相关时间$ q^2 $降低到两个数量级。使用该算法与非零想象$θ$的模拟结合使用,我们能够完善最先进的结果,以实现真空能量$ b_2 $的$θ$依赖性的Quartic Quartic系数的巨大行为,从而准确地与大型$ N $ limlimpolotipity topolotipition topolotical Suptipations to coption相提并论。

We simulate $4d$ $SU(N)$ pure-gauge theories at large $N$ using a parallel tempering scheme that combines simulations with open and periodic boundary conditions, implementing the algorithm originally proposed by Martin Hasenbusch for $2d$ $CP^{N-1}$ models. That allows to dramatically suppress the topological freezing suffered from standard local algorithms, reducing the autocorrelation time of $Q^2$ up to two orders of magnitude. Using this algorithm in combination with simulations at non-zero imaginary $θ$ we are able to refine state-of-the-art results for the large-$N$ behavior of the quartic coefficient of the $θ$-dependence of the vacuum energy $b_2$, reaching an accuracy comparable with that of the large-$N$ limit of the topological susceptibility.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源