论文标题
构建张量网络波函数,以通过热菲尔德双状态进行通用的二维量子相变
Constructing tensor network wavefunction for a generic two-dimensional quantum phase transition via thermofield double states
论文作者
论文摘要
二维量子rokhsar-kivelson(RK)类型模型的最重要特征是,它们的基态波函数规范可以映射到二维统计模型的分区函数中,以使量子相变为相应统计模型的热相变。对于通用量子临界点,我们通过引入Thermofield Double(TFD)状态的概念来概括RK波函数的框架,这是平衡密度算子的纯化。此外,通过根据预计的纠缠对状态表达TFD状态,其$ n $ - rényi熵级会导致欧几里得时空中的三维统计模型,描述了通用的量子相变。使用两个平行磁场的曲折代码模型为例,我们解释了这些想法,并得出了三维$ z_2 $ lattice gauge-higgs模型的分区功能,其中相变为三维普遍性类别。
The most important feature of two-dimensional quantum Rokhsar-Kivelson (RK) type models is that their ground state wavefunction norms can be mapped into the partition functions of two-dimensional statistical models so that the quantum phase transitions become the thermal phase transitions of the corresponding statistical models. For a generic quantum critical point, we generalize the framework of RK wavefunctions by introducing the concept of the thermofield double (TFD) state, which is a purification of the equilibrium density operator. Moreover, by expressing the TFD state in terms of the projected entangled pair state, its $N$-order of Rényi entropy results in a three-dimensional statistical model in Euclidian spacetime, describing the generic quantum phase transitions. Using the toric code model with two parallel magnetic fields as an example, we explain these ideas and derive the partition function of the three-dimensional $Z_2$ lattice gauge-Higgs model, where the phase transitions are characterized by the three-dimensional universality classes.