论文标题
通过重建数字痕迹的个人情节叙事来支持人类记忆
Supporting Human Memory by Reconstructing Personal Episodic Narratives from Digital Traces
论文作者
论文摘要
许多应用程序以数字形式捕获人们生活的各个方面。我们称之为个人数字轨迹的结果数据 - PDTS,可用于帮助重建人们的情节记忆并连接到过去的个人事件。这种重建有多种应用,从帮助神经退行性疾病的患者回想起过去的事件,到收集来自多个来源的线索以确定最近访问的接触和访问的地方 - 这是当前健康危机的关键新应用。本文采取了步骤,将数据集成,将数据集合到情节叙事中 - 使用脚本 - 日常活动的原型计划。具体而言,我们提出了一种匹配的算法,该算法将几个数字痕迹从许多不同的来源分组为脚本实例(情节),并提供了一种对候选剧集的可能性进行排名的技术。我们根据真实用户的个人数据报告了一项研究的结果,该研究表明我们的情节重建技术1)成功整合并将不同来源的痕迹结合到连贯的情节中,以及2)增强用户对他们过去的动作的记忆。
Numerous applications capture in digital form aspects of people's lives. The resulting data, which we call Personal Digital Traces - PDTs, can be used to help reconstruct people's episodic memories and connect to their past personal events. This reconstruction has several applications, from helping patients with neurodegenerative diseases recall past events to gathering clues from multiple sources to identify recent contacts and places visited - a critical new application for the current health crisis. This paper takes steps towards integrating, connecting and summarizing the heterogeneous collection of data into episodic narratives using scripts - prototypical plans for everyday activities. Specifically, we propose a matching algorithm that groups several digital traces from many different sources into script instances (episodes), and we provide a technique for ranking the likelihood of candidate episodes. We report on the results of a study based on the personal data of real users, which gives evidence that our episode reconstruction technique 1) successfully integrates and combines traces from different sources into coherent episodes, and 2) augments users' memory of their past actions.