论文标题

关于非线性系统的扩展,错误估计和收敛问题

On expansions for nonlinear systems, error estimates and convergence issues

论文作者

Beauchard, Karine, Borgne, Jérémy Le, Marbach, Frédéric

论文摘要

在许多应用领域(例如控制理论或数值操作员分裂)中,表达对非自主微分方程的解决方案的明确公式非常重要。特别是,已广泛研究了从溶液的几何特征中解脱出时间依赖性特征的内在公式。 首先,我们对正式线性微分方程的经典扩展进行了教学综述,包括著名的Magnus扩展(与第一类的坐标相关)和Sussmann的无限产品扩展(与第二类的坐标相关)。受量子力学的启发,我们引入了一种新的混合膨胀,旨在将时间流漂移的作用与随时间变化的扰动的作用隔离开来。 其次,在正规矢量场驱动的非线性普通微分方程的背景下,我们在正式扩展的精确解决方案和有限近似之间给出了严格的错误估计证明。特别是,我们得出了新的估计,重点是时变扰动的作用。对于标量输入系统,我们得出了仅涉及输入的弱Sobolev规范的新估计。 第三,我们研究了这些扩展的局部融合。我们回想起Nilpotent动力学和线性动力学的已知阳性结果。然而,我们还表现出任意的小分析矢量场,即使在非常弱的感觉中,马格努斯膨胀的收敛也会失败。我们陈述了有关苏斯曼无限产品扩展的融合的一个空旷问题。 最终,我们得出了国家的近似直接固有表示形式,并讨论了他们的链接,并选择了适当的坐标更改。

Explicit formulas expressing the solution to non-autonomous differential equations are of great importance in many application domains such as control theory or numerical operator splitting. In particular, intrinsic formulas allowing to decouple time-dependent features from geometry-dependent features of the solution have been extensively studied. First, we give a didactic review of classical expansions for formal linear differential equations, including the celebrated Magnus expansion (associated with coordinates of the first kind) and Sussmann's infinite product expansion (associated with coordinates of the second kind). Inspired by quantum mechanics, we introduce a new mixed expansion, designed to isolate the role of a time-invariant drift from the role of a time-varying perturbation. Second, in the context of nonlinear ordinary differential equations driven by regular vector fields, we give rigorous proofs of error estimates between the exact solution and finite approximations of the formal expansions. In particular, we derive new estimates focusing on the role of time-varying perturbations. For scalar-input systems, we derive new estimates involving only a weak Sobolev norm of the input. Third, we investigate the local convergence of these expansions. We recall known positive results for nilpotent dynamics and for linear dynamics. Nevertheless, we also exhibit arbitrarily small analytic vector fields for which the convergence of the Magnus expansion fails, even in very weak senses. We state an open problem concerning the convergence of Sussmann's infinite product expansion. Eventually, we derive approximate direct intrinsic representations for the state and discuss their link with the choice of an appropriate change of coordinates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源