论文标题
随着时间传递功能的大气掩星的相对论建模
Relativistic modeling of atmospheric occultations with time transfer functions
论文作者
论文摘要
上下文:掩盖实验代表了探测大气的远程物理特性的独特机会。数据处理需要一个在对电磁信号的时间/频率传输进行建模时正确考虑折射率。从理论上讲,关于阐述建模掩盖数据的协变方法的工作几乎没有完成。目的:我们提出了一种原始方法,允许人们在大气掩埋实验期间的时间/频率传输的协变量来得出适当的阶完全分析表达式。方法:我们利用两个独立的强大相对论理论工具,即光学时空度量和时间传输函数形式主义。第一个允许我们将折射率视为时空曲率,而第二个曲率则用于确定弯曲时空中发生的时间/频率传输。结果:我们将时间传输功能的整体形式提供到任何后链路后订单。我们将讨论指定为固定的光学时空,描述了稳定的旋转和球形对称气氛的掩星。在第一个后订单时提供了时间/频率传输的显式分析表达式,并通过将它们与光射线方程的数值集成的结果进行比较来评估其精度。结论:该方法准确地描述了垂直温度梯度,并且由于光学介质的运动而适当地说明了轻便的效果。它可以进一步推动,以便在更高阶和球形对称性假设以外的时间传输函数的明确形式。
Context: Occultation experiments represent unique opportunities for probing remotely physical properties of atmospheres. The data processing requires one to properly account for refractivity while modeling the time/frequency transfers of an electromagnetic signal. On theoretical grounds, little work have been done concerning the elaboration of a covariant approach for modeling occultation data. Aims: We present an original method allowing one to derive up to the appropriate order fully analytical expressions for the covariant description of time/frequency transfers during an atmospheric occultation experiment. Methods: We make use of two independent powerful relativistic theoretical tools, namely the optical spacetime metric, and the time transfer functions formalism. The first one allows us to consider refractivity as spacetime curvature while the second one is used to determine the time/frequency transfers occurring in a curved spacetime. Results: We provide the integral form of the time transfer function up to any post-Minkowskian order. We specify the discussion to a stationary optical spacetime describing an occultation by a steady rotating and spherically symmetric atmosphere. Explicit analytical expressions for the time/frequency transfers are provided at the first post-Minkowskian order and their accuracy is assessed by comparing them to results of a numerical integration of the equations for optical rays. Conclusions: The method accurately describes vertical temperature gradients and properly accounts for light-dragging effect due to the motion of the optical medium. It can be pushed further in order to derive the explicit form of the time transfer function at higher order and beyond the spherical symmetry assumption.