论文标题
通过表格翻译gan分类不平衡分类
Imbalanced Classification via a Tabular Translation GAN
论文作者
论文摘要
当出现数据表现出严重类失衡的二元分类问题时,大多数标准的预测方法可能无法准确地对少数群体进行建模。我们提出了一个基于生成对抗网络的模型,该模型使用其他正则化损失将多数样本映射到相应的合成少数族裔样本。这种翻译机制鼓励综合样品接近阶级边界。此外,我们探索了一个选择标准,以保留最有用的合成样品。在各种表格类不平衡数据集上使用几个下游分类器的实验结果表明,与替代性重新加权和过度采样技术相比,所提出的方法提高了平均精度。
When presented with a binary classification problem where the data exhibits severe class imbalance, most standard predictive methods may fail to accurately model the minority class. We present a model based on Generative Adversarial Networks which uses additional regularization losses to map majority samples to corresponding synthetic minority samples. This translation mechanism encourages the synthesized samples to be close to the class boundary. Furthermore, we explore a selection criterion to retain the most useful of the synthesized samples. Experimental results using several downstream classifiers on a variety of tabular class-imbalanced datasets show that the proposed method improves average precision when compared to alternative re-weighting and oversampling techniques.