论文标题

一个跨城市联合转移学习框架:关于城市地区分析的案例研究

A Cross-City Federated Transfer Learning Framework: A Case Study on Urban Region Profiling

论文作者

Chen, Gaode, Su, Yijun, Zhang, Xinghua, Hu, Anmin, Chen, Guochun, Feng, Siyuan, Xiang, Ji, Zhang, Junbo, Zheng, Yu

论文摘要

数据不足问题(即数据缺失和标签稀缺性)是由服务和基础架构不足或城市不平衡的发展水平引起的,在实际情况下严重影响了城市计算任务。先前的转移学习方法激发了对数据不足的优雅解决方案,但仅关注一种不足问题,并且未能考虑双方。此外,大多数以前的跨城市转移方法忽略了城市间数据隐私,这在实际应用中是公众关注的问题。为了解决上述具有挑战性的问题,我们提出了一个新型的跨城市联合转移学习框架(CCFTL),以应对数据不足和隐私问题。具体而言,CCFTL将关系知识从多个Rich-Data源城市传递给目标城市。此外,针对目标任务的模型参数首先在源数据上训练,然后通过参数传输对目标城市进行微调。通过适应联合培训和同型加密设置,CCFTL可以有效地解决城市之间的数据隐私问题。我们将城市地区的分析作为智能城市的应用,并通过一项现实世界的研究评估拟议的方法。实验证明了我们框架比几种竞争性最新方法的显着优势。

Data insufficiency problems (i.e., data missing and label scarcity) caused by inadequate services and infrastructures or imbalanced development levels of cities have seriously affected the urban computing tasks in real scenarios. Prior transfer learning methods inspire an elegant solution to the data insufficiency, but are only concerned with one kind of insufficiency issue and fail to give consideration to both sides. In addition, most previous cross-city transfer methods overlook inter-city data privacy which is a public concern in practical applications. To address the above challenging problems, we propose a novel Cross-city Federated Transfer Learning framework (CcFTL) to cope with the data insufficiency and privacy problems. Concretely, CcFTL transfers the relational knowledge from multiple rich-data source cities to the target city. Besides, the model parameters specific to the target task are firstly trained on the source data and then fine-tuned to the target city by parameter transfer. With our adaptation of federated training and homomorphic encryption settings, CcFTL can effectively deal with the data privacy problem among cities. We take the urban region profiling as an application of smart cities and evaluate the proposed method with a real-world study. The experiments demonstrate the notable superiority of our framework over several competitive state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源