论文标题

短期热带气旋强度指导的结构预测

Structural Forecasting for Short-term Tropical Cyclone Intensity Guidance

论文作者

McNeely, Trey, Khokhlov, Pavel, Dalmasso, Niccolo, Wood, Kimberly M., Lee, Ann B.

论文摘要

由于地静止卫星(GEO)图像为热带旋风(TC)行为提供了一个高的时间分辨率窗口,因此我们研究了其在TC对流结构的短期概率预测中的应用,以预测TC强度。在这里,我们提出了一个原型模型,该模型仅对两个输入进行训练:地理红外成像,导致感兴趣和强度估计的概要时间长达6小时。为了估计未来的TC结构,我们从红外图像中计算云顶温度径向曲线,然后通过应用深度自回旋生成模型(PixelSnail)在随后的12小时内模拟这些轮廓的集合的演变。为了预测6小时和12小时的TC强度,我们输入运行强度估计到当前时间(0 h),并将未来的径向概况模拟,直至+12 h,直至``newcasting''卷积神经网络。我们限制了我们的投入以证明我们的方法的生存能力,并能够量化观测到的未来和模拟的径向概况添加的值,超出了操作强度估计。我们的原型模型的误差比国家飓风中心的官方预测略高,尽管不包括垂直风剪和海面温度等环境因素。我们还证明,有可能通过从地理红外成像中的径向曲线合理地预测TC对流结构的短期演变,从而产生可解释的结构预测,这些预测可能对TC操作指导很有价值。

Because geostationary satellite (Geo) imagery provides a high temporal resolution window into tropical cyclone (TC) behavior, we investigate the viability of its application to short-term probabilistic forecasts of TC convective structure to subsequently predict TC intensity. Here, we present a prototype model which is trained solely on two inputs: Geo infrared imagery leading up to the synoptic time of interest and intensity estimates up to 6 hours prior to that time. To estimate future TC structure, we compute cloud-top temperature radial profiles from infrared imagery and then simulate the evolution of an ensemble of those profiles over the subsequent 12 hours by applying a Deep Autoregressive Generative Model (PixelSNAIL). To forecast TC intensities at hours 6 and 12, we input operational intensity estimates up to the current time (0 h) and simulated future radial profiles up to +12 h into a ``nowcasting'' convolutional neural network. We limit our inputs to demonstrate the viability of our approach and to enable quantification of value added by the observed and simulated future radial profiles beyond operational intensity estimates alone. Our prototype model achieves a marginally higher error than the National Hurricane Center's official forecasts despite excluding environmental factors, such as vertical wind shear and sea surface temperature. We also demonstrate that it is possible to reasonably predict short-term evolution of TC convective structure via radial profiles from Geo infrared imagery, resulting in interpretable structural forecasts that may be valuable for TC operational guidance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源