论文标题

通用延迟反馈模型,并在建议系统中使用后点击信息

Generalized Delayed Feedback Model with Post-Click Information in Recommender Systems

论文作者

Yang, Jia-Qi, Zhan, De-Chuan

论文摘要

预测转化率(例如,用户购买商品的可能性)是基于机器学习的建议系统中的一个基本问题。但是,在长时间延迟后揭示了准确的转换标签,这会损害推荐系统的及时性。先前的文献集中于利用早期转化来减轻这种延迟的反馈问题。在本文中,我们表明,点击点击用户行为也对转换率预测有用,可用于提高及时性。我们提出了一个广义的延迟反馈模型(GDFM),该模型将点击后的行为和早期转换统一为随机后点击信息,可以有效地以流媒体方式训练GDFM。基于GDFM,我们进一步建立了一种新的观点,即延迟反馈引入的性能差距可以归因于时间差距和抽样差距。受我们的分析的启发,我们建议通过时间距离和样品复杂性的结合来衡量点击点信息的质量。相应地将培训目标重新加权以突出显示信息丰富及时的信号。我们验证了对公共数据集的分析,实验性能证实了我们方法的有效性。

Predicting conversion rate (e.g., the probability that a user will purchase an item) is a fundamental problem in machine learning based recommender systems. However, accurate conversion labels are revealed after a long delay, which harms the timeliness of recommender systems. Previous literature concentrates on utilizing early conversions to mitigate such a delayed feedback problem. In this paper, we show that post-click user behaviors are also informative to conversion rate prediction and can be used to improve timeliness. We propose a generalized delayed feedback model (GDFM) that unifies both post-click behaviors and early conversions as stochastic post-click information, which could be utilized to train GDFM in a streaming manner efficiently. Based on GDFM, we further establish a novel perspective that the performance gap introduced by delayed feedback can be attributed to a temporal gap and a sampling gap. Inspired by our analysis, we propose to measure the quality of post-click information with a combination of temporal distance and sample complexity. The training objective is re-weighted accordingly to highlight informative and timely signals. We validate our analysis on public datasets, and experimental performance confirms the effectiveness of our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源