论文标题
您的功能有多偏见?:计算公平性影响全球灵敏度分析的功能
How Biased are Your Features?: Computing Fairness Influence Functions with Global Sensitivity Analysis
论文作者
论文摘要
由于在高级决策任务中广泛应用,机器学习中的公平性已引起重点。不受管制的机器学习分类器可以对数据中的某些人口组表现出偏见,因此分类器偏见的量化和缓解是机器学习公平性的核心问题。在本文中,我们旨在量化数据集中不同特征对分类器偏差的影响。为此,我们介绍了公平影响功能(FIF)。此功能将偏差分解为单个特征和多个特征的交点之间的组成部分。关键思想是将现有的群体公平指标表示为分类器预测中缩放条件差异的差异,并根据全球灵敏度分析应用方差分解。为了估计FIFS,我们实例化了一种算法FairXplainer,该算法在局部回归后应用了分类器预测的方差分解。实验表明,FairXplainer捕获了基于FIFS的偏见更好的偏差,表明FIFS与公平干预措施的较高相关性,并发现由于分类器中公平性的平等/惩罚性作用,因此提供了更高的偏差近似值。 该代码可在https://github.com/reaile/bias-explainer上找到。
Fairness in machine learning has attained significant focus due to the widespread application in high-stake decision-making tasks. Unregulated machine learning classifiers can exhibit bias towards certain demographic groups in data, thus the quantification and mitigation of classifier bias is a central concern in fairness in machine learning. In this paper, we aim to quantify the influence of different features in a dataset on the bias of a classifier. To do this, we introduce the Fairness Influence Function (FIF). This function breaks down bias into its components among individual features and the intersection of multiple features. The key idea is to represent existing group fairness metrics as the difference of the scaled conditional variances in the classifier's prediction and apply a decomposition of variance according to global sensitivity analysis. To estimate FIFs, we instantiate an algorithm FairXplainer that applies variance decomposition of classifier's prediction following local regression. Experiments demonstrate that FairXplainer captures FIFs of individual feature and intersectional features, provides a better approximation of bias based on FIFs, demonstrates higher correlation of FIFs with fairness interventions, and detects changes in bias due to fairness affirmative/punitive actions in the classifier. The code is available at https://github.com/ReAILe/bias-explainer.