论文标题
关于知识图嵌入的有效性:规则挖掘方法
On the Effectiveness of Knowledge Graph Embeddings: a Rule Mining Approach
论文作者
论文摘要
我们研究知识图嵌入(KGE)对知识图(KG)完成的有效性,并通过规则挖掘完成。更具体地说,我们在KGE完成之前和之后从KGS中挖掘规则,以比较提取的规则的可能差异。我们将此方法应用于经典的方法,尤其是Transe,Distmult and Complexten。我们的实验表明,根据KGE完成的KGE方法,提取的规则之间可能存在巨大差异。特别是,在完成转盘后,提取了几条虚假规则。
We study the effectiveness of Knowledge Graph Embeddings (KGE) for knowledge graph (KG) completion with rule mining. More specifically, we mine rules from KGs before and after they have been completed by a KGE to compare possible differences in the rules extracted. We apply this method to classical KGEs approaches, in particular, TransE, DistMult and ComplEx. Our experiments indicate that there can be huge differences between the extracted rules, depending on the KGE approach for KG completion. In particular, after the TransE completion, several spurious rules were extracted.