论文标题
通过优化的量子路由来改善量子计算
Improving Quantum Computation by Optimized Qubit Routing
论文作者
论文摘要
在这项工作中,我们提出了一种通过交换插入的高质量分解方法,用于量子插入。此优化问题是在将量子算法编译到特定量子硬件上的背景下出现的。我们的方法将路由问题分解为分配子问题和一组令牌交换问题。这使我们能够分别解决分配部分和令牌交换部分。从Nannicini等人的量子路由模型中提取分配部分。 (ARXIV:2106.06446),我们将分配子问题作为二进制程序。在此,我们采用了一个成本函数,这是整体路由问题目标的下限。我们通过新的有效不平等增强线性放松。对于令牌交换部分,我们开发了一个精确的分支结合算法。在这种情况下,我们改善了关于令牌交换问题的已知下限。此外,我们增强了现有的近似算法。我们提出了集成分配和令牌交换问题的数值结果。由于分解和使用近似算法的使用,获得的溶液可能不会在全球范围内最佳。但是,这些解决方案的获得很快,并且通常接近最佳。此外,与最先进的启发式方法相比,门的数量和输出电路深度的数量显着减少。在近期硬件上运行量子算法时,减少这些数字对于最大程度地减少噪声至关重要。结果,使用新颖的分解方法会导致质量提高的编译算法。实际上,当通过新型路由程序编译并在实际硬件上执行时,我们的量子近似优化算法的实验结果与标准路由方法相比,解决方案质量显着增加。
In this work we propose a high-quality decomposition approach for qubit routing by swap insertion. This optimization problem arises in the context of compiling quantum algorithms onto specific quantum hardware. Our approach decomposes the routing problem into an allocation subproblem and a set of token swapping problems. This allows us to tackle the allocation part and the token swapping part separately. Extracting the allocation part from the qubit routing model of Nannicini et al. (arXiv:2106.06446), we formulate the allocation subproblem as a binary program. Herein, we employ a cost function that is a lower bound on the overall routing problem objective. We strengthen the linear relaxation by novel valid inequalities. For the token swapping part we develop an exact branch-and-bound algorithm. In this context, we improve upon known lower bounds on the token swapping problem. Furthermore, we enhance an existing approximation algorithm. We present numerical results for the integrated allocation and token swapping problem. Obtained solutions may not be globally optimal due to the decomposition and the usage of an approximation algorithm. However, the solutions are obtained fast and are typically close to optimal. In addition, there is a significant reduction in the number of gates and output circuit depth when compared to state-of-the-art heuristics. Reducing these figures is crucial for minimizing noise when running quantum algorithms on near-term hardware. As a consequence, using the novel decomposition approach leads to compiled algorithms with improved quality. Indeed, when compiled with the novel routing procedure and executed on real hardware, our experimental results for quantum approximate optimization algorithms show an significant increase in solution quality in comparison to standard routing methods.