论文标题
使用复杂的圆歧管方法优化能量受限的IRS-NOMA
Optimization of Energy-Constrained IRS-NOMA Using a Complex Circle Manifold Approach
论文作者
论文摘要
这项工作调查了智能反射表面(IRSS)在能量受限网络中协助上行链路非正交多访问(NOMA)的性能。具体而言,我们制定并解决了两个优化问题。第一个目的是最大程度地减少用户发射功率的总和,而第二个目标是最大化系统级别能源效率(EE)。通过共同优化用户的发射功率和IRS的光束成形系数来解决这两个问题,但受用户单独的上行链路速率和传输功率约束的约束。开发了一种新颖和低复杂性算法,以通过优化目标函数在\ textIt {复杂圆歧管}(CCM)上优化IRS波束成型系数。为了有效地优化IRS的相位偏移,将优化问题重新构成可行性扩展问题,该问题将减小为最大信号 - 加上互助比(SINR)。然后,借助平滑技术,使用确切的惩罚方法将问题从约束转变为不受限制。将提出的解决方案与三个半明确编程(SDP)的基准测试(SDP弛豫(SDR),凸(SDP-DC)的SDP-差异和顺序rank-sone约束弛豫(SRROR)。结果表明,歧管算法比基于SDP的基准提供了更好的性能,并且对于发射功率最小化和EE最大化问题的计算复杂性要低得多。结果还表明,当用户的目标可实现的速率要求相对较高时,IRS-NOMA仅优于正交多重访问(OMA)。
This work investigates the performance of intelligent reflective surfaces (IRSs) assisted uplink non-orthogonal multiple access (NOMA) in energy-constrained networks. Specifically, we formulate and solve two optimization problems; the first aims at minimizing the sum of users' transmit power, while the second targets maximizing the system level energy efficiency (EE). The two problems are solved by jointly optimizing the users' transmit powers and the beamforming coefficients at IRS subject to the users' individual uplink rate and transmit power constraints. A novel and low complexity algorithm is developed to optimize the IRS beamforming coefficients by optimizing the objective function over a \textit{complex circle manifold} (CCM). To efficiently optimize the IRS phase shifts over the manifold, the optimization problem is reformulated into a feasibility expansion problem which is reduced to a max-min signal-plus-interference-ratio (SINR). Then, with the aid of a smoothing technique, the exact penalty method is applied to transform the problem from constrained to unconstrained. The proposed solution is compared against three semi-definite programming (SDP)-based benchmarks which are semi-definite relaxation (SDR), SDP-difference of convex (SDP-DC) and sequential rank-one constraint relaxation (SROCR). The results show that the manifold algorithm provides better performance than the SDP-based benchmarks, and at a much lower computational complexity for both the transmit power minimization and EE maximization problems. The results also reveal that IRS-NOMA is only superior to orthogonal multiple access (OMA) when the users' target achievable rate requirements are relatively high.