论文标题
潜在功能的水平集合无界的四边形
Level sets of potential functions bisecting unbounded quadrilaterals
论文作者
论文摘要
我们研究了在扩展的复合平面中有界凸多边形四边形的补充中的拉普拉斯方程中的混合差异元素 - neumann问题。 dirichlet \,/\,在相对的两侧的neumann条件为$ \ {0,1 \} $和$ \ {0,0 \},$ resp。解决此问题的解决方案是在四边形的\ emph {势函数}的无界补体中的谐波函数。我们计算潜在函数的值,包括其无穷大的值。
We study the mixed Dirichlet-Neumann problem for the Laplace equation in the complement of a bounded convex polygonal quadrilateral in the extended complex plane. The Dirichlet\,/\,Neumann conditions at opposite pairs of sides are $\{0,1\}$ and $\{0,0\},$ resp. The solution to this problem is a harmonic function in the unbounded complement of the polygon known as the \emph{potential function} of the quadrilateral. We compute the values of the potential function including its value at infinity.