论文标题

学习丰富的光学嵌入,以保护隐私无眼图像分类

Learning rich optical embeddings for privacy-preserving lensless image classification

论文作者

Bezzam, Eric, Vetterli, Martin, Simeoni, Matthieu

论文摘要

通过用薄的光学元素代替镜头,无镜头成像可实现新的应用程序和解决方案,而不是传统的摄像机设计和后处理,例如紧凑而轻巧的形式和视觉隐私。后者来自无透镜相机的高度多路复用测量,这些测量需要对成像系统的了解才能恢复可识别的图像。在这项工作中,我们利用了这种独特的多路复用属性:将光学铸造为编码器,该编码器直接在相机传感器上产生学习的嵌入。我们在图像分类的背景下这样做,在该上下文中,我们以端到端的方式共同优化编码器的参数和图像分类器的参数。我们的实验表明,共同学习无透镜的光学编码器和数字处理可以使传感器的分辨率较低,因此更好的隐私性,因为从这些测量结果中恢复有意义的图像要困难得多。其他实验表明,这种优化允许无透镜测量值对典型的现实世界图像转换更健壮。尽管这项工作重点是分类,但建议的可编程无镜头相机和端到端优化可以应用于其他计算成像任务。

By replacing the lens with a thin optical element, lensless imaging enables new applications and solutions beyond those supported by traditional camera design and post-processing, e.g. compact and lightweight form factors and visual privacy. The latter arises from the highly multiplexed measurements of lensless cameras, which require knowledge of the imaging system to recover a recognizable image. In this work, we exploit this unique multiplexing property: casting the optics as an encoder that produces learned embeddings directly at the camera sensor. We do so in the context of image classification, where we jointly optimize the encoder's parameters and those of an image classifier in an end-to-end fashion. Our experiments show that jointly learning the lensless optical encoder and the digital processing allows for lower resolution embeddings at the sensor, and hence better privacy as it is much harder to recover meaningful images from these measurements. Additional experiments show that such an optimization allows for lensless measurements that are more robust to typical real-world image transformations. While this work focuses on classification, the proposed programmable lensless camera and end-to-end optimization can be applied to other computational imaging tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源