论文标题
$ \ mathit {\ text {ab intio}} $原子结构放松的基于力的梯度下降方法
A force-based gradient descent method for $\mathit{\text{ab initio}}$ atomic structure relaxation
论文作者
论文摘要
$ \ mathit {\ text {ab intib}} $基于武力的算法放松,例如共轭梯度方法,通常会陷入沿搜索方向的最小化过程中,而昂贵的$ \ mathit {\ mathit {\ mathit {\ text {ab initio}} $经常触发了下一个位置,以便在下一步进行触发的位置。我们提出了一种基于力的梯度下降方法WANBB,该方法避免了缺陷。在每次迭代中,WANBB都通过试验捕获能量表面的局部曲率,进入最小化过程。出口由倾向于接受早期试验的不受限制标准控制。这两种成分简化了WANBB中的最小化过程。与共轭梯度方法相比,对具有良好普遍性的近80个系统的数值模拟表明,WANBB对未接受试验的成本进行了相当大的压缩。我们还可以在整个台上观察到显着和通用的加速度,以及WANBB在几种广泛使用的方法上的出色鲁棒性。从理论上讲,后一点是建立的。 WANBB的实现非常简单,因为不需要先验的物理知识,并且只有两个参数而没有调整。
Force-based algorithms for $\mathit{\text{ab initio}}$ atomic structure relaxation, such as conjugate gradient methods, usually get stuck in the line minimization processes along search directions, where expensive $\mathit{\text{ab initio}}$ calculations are triggered frequently to test trial positions before locating the next iterate. We present a force-based gradient descent method, WANBB, that circumvents the deficiency. At each iteration, WANBB enters the line minimization process with a trial stepsize capturing the local curvature of the energy surface. The exit is controlled by an unrestrictive criterion that tends to accept early trials. These two ingredients streamline the line minimization process in WANBB. The numerical simulations on nearly 80 systems with good universality demonstrate the considerable compression of WANBB on the cost for the unaccepted trials compared with conjugate gradient methods. We also observe across the board significant and universal speedups as well as the superior robustness of WANBB over several widely used methods. The latter point is theoretically established. The implementation of WANBB is pretty simple, in that no a priori physical knowledge is required and only two parameters are present without tuning.