论文标题

火星图像分类和细分的半监督学习

Semi-Supervised Learning for Mars Imagery Classification and Segmentation

论文作者

Wang, Wenjing, Lin, Lilang, Fan, Zejia, Liu, Jiaying

论文摘要

随着火星探索的进展,收集了许多火星图像数据,需要分析。但是,由于火星数据的不平衡和扭曲,现有的计算机视觉模型的性能并不令人满意。在本文中,我们引入了一个半监督的框架,用于火星上的机器视觉,并尝试解决两个特定的任务:分类和分割。对比学习是一种强大的表示技术。但是,火星数据样本之间存在太多的信息重叠,从而导致对比度学习与火星数据之间存在矛盾。我们的关键思想是在注释的帮助下调和这一矛盾,并进一步利用未标记的数据来提高性能。对于分类,我们建议忽略标记数据上的内阶级对,而忽略了未标记的数据上的负面对,形成了监督的阶层间的对比度学习和无监督的相似性学习。为了进行细分,我们将监督的阶层对比度学习扩展到元素模式,并使用在线伪标签在未标记的领域进行监督。实验结果表明,我们的学习策略可以通过较大的差距和优于最先进的方法来改善分类和细分模型。

With the progress of Mars exploration, numerous Mars image data are collected and need to be analyzed. However, due to the imbalance and distortion of Martian data, the performance of existing computer vision models is unsatisfactory. In this paper, we introduce a semi-supervised framework for machine vision on Mars and try to resolve two specific tasks: classification and segmentation. Contrastive learning is a powerful representation learning technique. However, there is too much information overlap between Martian data samples, leading to a contradiction between contrastive learning and Martian data. Our key idea is to reconcile this contradiction with the help of annotations and further take advantage of unlabeled data to improve performance. For classification, we propose to ignore inner-class pairs on labeled data as well as neglect negative pairs on unlabeled data, forming supervised inter-class contrastive learning and unsupervised similarity learning. For segmentation, we extend supervised inter-class contrastive learning into an element-wise mode and use online pseudo labels for supervision on unlabeled areas. Experimental results show that our learning strategies can improve the classification and segmentation models by a large margin and outperform state-of-the-art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源