论文标题
与自变量的近似
Approximation with Independent Variables
论文作者
论文摘要
给定概率空间$(ω。\ Mathcal f,\ pr)$和一个子sigma algebra $ \ mathcal a $ a $ a $ a $ a $ a $ a $ $ y $ y $ y $ y $ y $ y $ y $ y $ y $ y $ y $ y $ y $ $ y $ y $ y $,独立于$ \ \ yathcal a $,并最小化$ l^2 $ x $ x $ x $ x $ x $ x $ x $ x $ a $ $ x $ $ x $ $ x $ $ x $ x $ x $ x $。这种结果对人工智能,机器学习和网络理论的公平性和偏见至关重要。
Given a square integrable m-dimensional random variable $X$ on a probability space $(Ω.\mathcal F,\Pr)$ and a sub sigma algebra $\mathcal A$, we show that there exists another m-dimensional random variable $Y$, independent of $\mathcal A$ and minimising the $L^2$ distance to $X$. Such results have an importance to fairness and bias reduction in Artificial Intelligence, Machine Learning and Network Theory.