论文标题
将电子电离的方向映射到VUV和IR激光脉冲之间的相位延迟
Mapping the direction of electron ionization to phase delay between VUV and IR laser pulses
论文作者
论文摘要
从理论上讲,我们在电子电离方向与线性极化VUV和圆形IR激光脉冲之间的相位延迟之间进行了一对一的映射。为了实现这一目标,我们使用一个超短VUV脉冲,该脉冲定义了在IR脉冲中释放上述阈值电子时的时间和空间的时刻。然后可以将电子加速至高速度,从而完全由两种脉冲之间的相延迟确定的方向逸出。从本工作中考虑的n $ _2 $分子的初始结合状态过渡到连续体的偶极基矩阵元件是使用涉及计算准确连续分子状态的量子机械技术获得的。在IR脉冲中释放电子后,我们进化了经典的轨迹,忽略了库仑电势并考虑量子干扰,以计算最终电子动量的方向和幅度的分布。我们从理论上开发的概念可以实现,以产生产生大磁场的纳米级环电流。
We theoretically demonstrate a one-to-one mapping between the direction of electron ionization and the phase delay between a linearly polarized VUV and a circular IR laser pulse. To achieve this, we use an ultrashort VUV pulse that defines the moment in time and space when an above threshold electron is released in the IR pulse. The electron can then be accelerated to high velocities escaping in a direction completely determined by the phase delay between the two pulses. The dipole matrix element to transition from an initial bound state of the N$_2$ molecule, considered in this work, to the continuum is obtained using quantum mechanical techniques that involve computing accurate continuum molecular states. Following release of the electron in the IR pulse, we evolve classical trajectories, neglecting the Coulomb potential and accounting for quantum interference, to compute the distribution of the direction and magnitude of the final electron momentum. The concept we theoretically develop can be implemented to produce nanoscale ring currents that generate large magnetic fields.