论文标题

块共聚物熔体的相分离动力学限制在移动平行壁下:DPD研究

Phase separation kinetics of block copolymer melts confined under moving parallel walls: a DPD study

论文作者

Singh, Ashish Kumar, Singh, Awaneesh

论文摘要

我们使用耗散粒子动力学(DPD)模拟来研究剪切对分离临界二嵌段共聚物(BCP)散装材料的微相域形态和动力学的影响。熔体被限制在模拟框顶部和底部的两个平行的实心壁中。剪切是通过允许壁以特定速度的方向移动来诱导的。我们探索以下情况:(i)墙壁固定,(ii)只有顶壁移动,(iii)两个壁向相同的方向移动,并且(iv)两个壁都在相反的方向上移动。温度淬火后,我们监测剪切对进化形态,系统缩放行为以及特征长度尺度和生长的影响。特征长度尺度遵循典型的幂律行为,并在固定两个壁时的后期饱和。长度尺度随着壁速度引起的剪切大大变化。对于非零壁速度病例,在考虑的仿真时间步骤中,在情况1中未能实现的通常层状形态在案例1中无法实现。具体而言,在情况4之前,它比其他情况下要多得多。我们发现,在给定的粗糙时,所有情况下的壁速度(剪切速率)降低(剪切速率)。总体而言,我们报告了剪切速率对BCP熔体微相分离动力学的影响规则。这项研究可以提供一个方案,以在应用外部控制的壁剪切应用下预测和设计各向异性微观结构,该微观结构可以进一步指导生产具有优质机械和物理特性的各种复合材料。

We use dissipative particle dynamics (DPD) simulations to study the effect of shear on domain morphology and kinetics of microphase separating critical diblock copolymer (BCP) bulk melts. The melt is confined within two parallel solid walls at the top and bottom of the simulation box. The shear is induced by allowing the walls to move in a direction with a specific velocity. We explore the following cases: (i) walls are fixed, (ii) only the top wall moves, (iii) both walls move in the same direction, and (iv) both walls move in opposite directions. After the temperature quench, we monitor the effect of shear on evolution morphology, the scaling behavior of the system, and the characteristic length scale and growth. The characteristic length scale follows typical power-law behavior at early times and saturates at late times when both walls are fixed. The length scale changes significantly with shear caused by wall velocities. The usual lamellar morphology, which is not achieved for case 1 within the considered simulation time steps, is noticed much earlier for the nonzero wall velocity cases. Specifically, it is seen much before in case 4 than in the other cases. We find that the shear viscosity decreases (shear-thinning) with wall velocity (shear rate) for all the cases at a given coarsening time. Overall, we report the influence rule of shear rates on microphase separation kinetics of BCP melts. This study can provide a scheme to anticipate and design anisotropic microstructures under the application of externally controlled wall shear that may further guide in producing the various composite materials with superior mechanical and physical properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源