论文标题

使用集体人工智能来更好地解释和可推广的广告检测

Towards better Interpretable and Generalizable AD detection using Collective Artificial Intelligence

论文作者

Nguyen, Huy-Dung, Clément, Michaël, Mansencal, Boris, Coupé, Pierrick

论文摘要

阿尔茨海默氏病是痴呆症的最常见原因。该疾病的准确诊断和预后对于设计适当的治疗计划至关重要,从而提高患者的预期寿命。已经对使用机器学习来从神经影像数据(例如结构磁共振成像)中鉴定出阿尔茨海默氏病。近年来,计算机视觉中深度学习的进步暗示了这个问题的新研究方向。但是,与传统的机器学习技术相比,当前基于深度学习的方法具有许多缺点,包括模型决策的解释性,缺乏通用性信息和较低的性能。在本文中,我们设计了一个两阶段的框架来克服这些局限性。在第一阶段,使用125 U-NET的合奏来对输入图像进行评分,从而产生一个3D图,以反映Voxel级别的疾病严重程度。该地图可以帮助定位由疾病引起的异常大脑区域。在第二阶段,我们使用生成的分级图和有关主题的其他信息对每个个体进行建模。我们建议使用图形卷积神经网络分类器进行最终分类。结果,我们的框架表现出与不同数据集中最先进方法的比较性能,以进行诊断和预后。我们还证明,使用大型U-NET的使用为我们的框架提供了更好的概括能力。

Alzheimer's Disease is the most common cause of dementia. Accurate diagnosis and prognosis of this disease are essential to design an appropriate treatment plan, increasing the life expectancy of the patient. Intense research has been conducted on the use of machine learning to identify Alzheimer's Disease from neuroimaging data, such as structural magnetic resonance imaging. In recent years, advances of deep learning in computer vision suggest a new research direction for this problem. Current deep learning-based approaches in this field, however, have a number of drawbacks, including the interpretability of model decisions, a lack of generalizability information and a lower performance compared to traditional machine learning techniques. In this paper, we design a two-stage framework to overcome these limitations. In the first stage, an ensemble of 125 U-Nets is used to grade the input image, producing a 3D map that reflects the disease severity at voxel-level. This map can help to localize abnormal brain areas caused by the disease. In the second stage, we model a graph per individual using the generated grading map and other information about the subject. We propose to use a graph convolutional neural network classifier for the final classification. As a result, our framework demonstrates comparative performance to the state-of-the-art methods in different datasets for both diagnosis and prognosis. We also demonstrate that the use of a large ensemble of U-Nets offers a better generalization capacity for our framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源