论文标题

通过最佳内容建议开放回声室

Opening up echo chambers via optimal content recommendation

论文作者

Vendeville, Antoine, Giovanidis, Anastasios, Papanastasiou, Effrosyni, Guedj, Benjamin

论文摘要

在线社交平台已成为政治辩论中的核心。在这种情况下,回声室的存在是主要相关性的问题。这些志趣相投的人的集群倾向于增强先前的信念,引起对他人的仇恨,并加剧了错误信息的传播。我们在与2017年法国总统选举有关的Twitter数据集中研究了这一现象,并提出了一种通过内容建议来解决该现象。我们使用二次程序来查找最佳建议,以最大程度地提高内容用户的多样性,同时仍考虑其偏好。我们的方法取决于一个理论模型,该模型可以充分描述内容如何流过平台。我们表明,该模型提供了经验措施的良好近似值,并证明了优化算法在减轻该数据集的回声室效应方面的有效性,即使建议有限的建议。

Online social platforms have become central in the political debate. In this context, the existence of echo chambers is a problem of primary relevance. These clusters of like-minded individuals tend to reinforce prior beliefs, elicit animosity towards others and aggravate the spread of misinformation. We study this phenomenon on a Twitter dataset related to the 2017 French presidential elections and propose a method to tackle it with content recommendations. We use a quadratic program to find optimal recommendations that maximise the diversity of content users are exposed to, while still accounting for their preferences. Our method relies on a theoretical model that can sufficiently describe how content flows through the platform. We show that the model provides good approximations of empirical measures and demonstrate the effectiveness of the optimisation algorithm at mitigating the echo chamber effect on this dataset, even with limited budget for recommendations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源