论文标题
VN转换器:向量神经元的旋转 - 等级关注
VN-Transformer: Rotation-Equivariant Attention for Vector Neurons
论文作者
论文摘要
在许多实际应用(例如运动预测和3D感知)中,旋转量比是理想的属性,它可以提供样本效率,更好的概括和对输入扰动的鲁棒性等好处。向量神经元(VN)是一个最近开发的框架,它通过将一维标量神经元扩展到三维“向量神经元”,提供一种简单而有效的方法,用于推导标准机器学习操作的旋转等值的类似物。我们介绍了一种小说的“ VN转换器”体系结构,以解决当前VN模型的几个缺点。我们的贡献是:$(i)$,我们得出了一种旋转等值的注意机制,这消除了原始矢量神经元模型所需的重型特征预处理的需求; $(ii)$我们扩展了VN框架以支持非空间属性,将这些模型的适用性扩展到现实世界数据集; $(iii)$,我们得出了一种旋转量表机制,用于多尺度降低点云的分辨率,从而大大加快了推理和训练; $(iv)$我们表明,可以使用小额的折衷($ε$ - $ - 折异位)来获得对加速硬件的数值稳定性和训练鲁棒性的巨大改进,并且我们约束了模型中违反等值的侵犯的传播。最后,我们将VN变形器应用于3D形状分类和运动预测,并具有令人信服的结果。
Rotation equivariance is a desirable property in many practical applications such as motion forecasting and 3D perception, where it can offer benefits like sample efficiency, better generalization, and robustness to input perturbations. Vector Neurons (VN) is a recently developed framework offering a simple yet effective approach for deriving rotation-equivariant analogs of standard machine learning operations by extending one-dimensional scalar neurons to three-dimensional "vector neurons." We introduce a novel "VN-Transformer" architecture to address several shortcomings of the current VN models. Our contributions are: $(i)$ we derive a rotation-equivariant attention mechanism which eliminates the need for the heavy feature preprocessing required by the original Vector Neurons models; $(ii)$ we extend the VN framework to support non-spatial attributes, expanding the applicability of these models to real-world datasets; $(iii)$ we derive a rotation-equivariant mechanism for multi-scale reduction of point-cloud resolution, greatly speeding up inference and training; $(iv)$ we show that small tradeoffs in equivariance ($ε$-approximate equivariance) can be used to obtain large improvements in numerical stability and training robustness on accelerated hardware, and we bound the propagation of equivariance violations in our models. Finally, we apply our VN-Transformer to 3D shape classification and motion forecasting with compelling results.