论文标题

通过caffarelli-silvestre扩展

Singularities of fractional Emden's equations via Caffarelli-Silvestre extension

论文作者

Chen, Huyuan, Véron, Laurent

论文摘要

我们研究了满足功能的孤立奇异性(e)( - $δ$)s v $ \ pm $ | v | p - 1 v = 0 in $ω$ \ {0},v = 0 in r n \ $ω$,其中0 <s <1,p> 1和$ω$是一个包含原点的有界域。我们将Caffarelli-Silvestre扩展扩展到R + X RN。我们强调获得先验估计值,通过能量方法分析一组自相似溶液以表征奇异性。

We study the isolated singularities of functions satisfying (E) (--$Δ$) s v$\pm$|v| p--1 v = 0 in $Ω$\{0}, v = 0 in R N \$Ω$, where 0 < s < 1, p > 1 and $Ω$ is a bounded domain containing the origin. We use the Caffarelli-Silvestre extension to R + x R N. We emphasize the obtention of a priori estimates, analyse the set of self-similar solutions via energy methods to characterize the singularities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源