论文标题
在某些属0中,整个功能
On Certain Genus 0 Entire Functions
论文作者
论文摘要
在这项工作中,我们证明整个函数$ f(z)$仅在且仅当其订单严格少$ 1 $时才具有负零,其根部序列是真正的主导,并且存在一个非负整数$ m $ $ \ left( - \ frac {1} {x} \ right)^{m} \ frac {d^{k}}} {dx^{k}}} \ left(x^{k+ m} \ frac {d^{m}} {dx^{m}}} \ left(\ frac {f'(x)} {f(x)} \ right)\ right)$对于所有非负整数$ k $的$(0,\ infty)$,完全单调。作为一种应用,我们陈述了Riemann假设的必要条件,并为原始Dirichlet特征提供了普遍的Riemann假设。
In this work we prove that an entire function $f(z)$ has only negative zeros if and only if its order is strictly less $1$, its root sequence is real-part dominating and there exists an nonnegative integer $m$ the real function $\left(-\frac{1}{x}\right)^{m}\frac{d^{k}}{dx^{k}}\left(x^{k+m}\frac{d^{m}}{dx^{m}}\left(\frac{f'(x)}{f(x)}\right)\right)$ are completely monotonic on $(0,\infty)$ for all nonnegative integer $k$. As an application we state a necessary and sufficient condition for the Riemann hypothesis and generalized Riemann hypothesis for a primitive Dirichlet character.