论文标题

TBDFS:暂时图神经网络利用DFS

tBDFS: Temporal Graph Neural Network Leveraging DFS

论文作者

Singer, Uriel, Roitman, Haggai, Guy, Ido, Radinsky, Kira

论文摘要

时间图神经网络(时间GNN)已被广泛研究,在多个预测任务上达到了最先进的结果。大多数以前的作品采用的一种常见方法是应用一个层,该图层汇总了节点历史邻居的信息。在这项工作中,我们提出了一个不同的研究方向,我们提出了TBDFS-一种新型的时间GNN架构。 TBDF应用了一个层,该图层有效地将信息从时间路径汇总到图中给定(目标)节点。对于每个给定的节点,将聚集分为两个阶段:(1)在该节点中结束的每个时间路径都学会了一个表示,并且(2)所有路径表示汇总为最终的节点表示。总体而言,我们的目标不是在节点中添加新信息,而是从新的角度观察相同的确切信息。这使我们的模型可以直接观察到面向路径的模式,而不是面向邻里的模式。与以前的作品中应用的流行呼吸优先搜索(BFS)遍历相比,这可以认为是时间图上的深度优先搜索(DFS)遍历。我们在多个链接预测任务上评估了TBDF,并显示出与最先进的基线相比的表现。据我们所知,我们是第一个应用Perimal-DFS神经网络的人。

Temporal graph neural networks (temporal GNNs) have been widely researched, reaching state-of-the-art results on multiple prediction tasks. A common approach employed by most previous works is to apply a layer that aggregates information from the historical neighbors of a node. Taking a different research direction, in this work, we propose tBDFS -- a novel temporal GNN architecture. tBDFS applies a layer that efficiently aggregates information from temporal paths to a given (target) node in the graph. For each given node, the aggregation is applied in two stages: (1) A single representation is learned for each temporal path ending in that node, and (2) all path representations are aggregated into a final node representation. Overall, our goal is not to add new information to a node, but rather observe the same exact information in a new perspective. This allows our model to directly observe patterns that are path-oriented rather than neighborhood-oriented. This can be thought as a Depth-First Search (DFS) traversal over the temporal graph, compared to the popular Breath-First Search (BFS) traversal that is applied in previous works. We evaluate tBDFS over multiple link prediction tasks and show its favorable performance compared to state-of-the-art baselines. To the best of our knowledge, we are the first to apply a temporal-DFS neural network.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源