论文标题

用于在移动边缘计算中卸载任务的混合人工神经网络

A Hybrid Artificial Neural Network for Task Offloading in Mobile Edge Computing

论文作者

Hamadi, Raby, Khanfor, Abdullah, Ghazzai, Hakim, Massoud, Yehia

论文摘要

Edge Computing(EC)是关于重塑数据的处理方式,处理和交付的方式在广泛的异质网络中。 EC的基本概念之一是通过利用具有强大的计算功能的前端设备来推动数据处理附近的数据处理。因此,只有在必要时才将使用集中式体系结构(例如云计算)限制为云计算。本文提出了一种新颖的边缘计算机卸载技术,该技术将设备生成的计算任务分配给具有足够的计算资源的潜在边缘计算机。所提出的方法基于其硬件规格将边缘计算机群集成。之后,设备生成的任务将被馈送到混合人工神经网络(ANN)模型,该模型基于这些任务,具有足够的计算资源来执行它们的边缘计算机的配置文件,即功能,功能。然后将预测的边缘计算机分配给它们所属的群集,以便将每个任务分配给一个边缘计算机群。最后,我们为每个任务选择Edge计算机,该计算机有望提供最快的响应时间。实验结果表明,我们提出的方法使用现实世界的物联网数据集优于其他最先进的机器学习方法。

Edge Computing (EC) is about remodeling the way data is handled, processed, and delivered within a vast heterogeneous network. One of the fundamental concepts of EC is to push the data processing near the edge by exploiting front-end devices with powerful computation capabilities. Thus, limiting the use of centralized architecture, such as cloud computing, to only when it is necessary. This paper proposes a novel edge computer offloading technique that assigns computational tasks generated by devices to potential edge computers with enough computational resources. The proposed approach clusters the edge computers based on their hardware specifications. Afterwards, the tasks generated by devices will be fed to a hybrid Artificial Neural Network (ANN) model that predicts, based on these tasks, the profiles, i.e., features, of the edge computers with enough computational resources to execute them. The predicted edge computers are then assigned to the cluster they belong to so that each task is assigned to a cluster of edge computers. Finally, we choose for each task the edge computer that is expected to provide the fastest response time. The experiment results show that our proposed approach outperforms other state-of-the-art machine learning approaches using real-world IoT dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源