论文标题
交通繁重的连接队列长度分布而无需资源集
Heavy Traffic Joint Queue Length Distribution without Resource Pooling
论文作者
论文摘要
本文研究了两个随机处理网络(SPN)中的队列长度的繁重的关节分布,即在最大量调度策略下运行的输入式开关,以及一个称为$ \ MATHCAL {n} $系统的两个服务器并行服务器系统。这两个系统是不满足所谓的完整资源汇总(CRP)条件的SPN的代表,因此表现出多维状态空间崩溃(SSC)。除特殊情况外,文献中仅知道这种非CRP系统的平均队列长度。在本文中,我们开发了转换方法来研究非CRP系统中队列长度的联合分布。关键的挑战是解决一个隐性功能方程,涉及繁重的限制分布的拉普拉斯变换。对于$ \ Mathcal {n} $ - 系统和仅涉及三个队列的输入式开关的特殊情况,我们根据两个IID指数的线性组合获得了确切的限制重型交通分布。对于具有$ n^2 $队列的一般$ n \ times n $输入式开关,在猜想的是功能方程解决方案的唯一性下,我们以$ 2N $ IID $ IID指数为$ 2N $ IID $ 2N $的非线性组合,获得了重型流量极限长期长度的确切关节分布。
This paper studies the heavy-traffic joint distribution of queue lengths in two stochastic processing networks (SPN), viz., an input-queued switch operating under the MaxWeight scheduling policy and a two-server parallel server system called the $\mathcal{N}$-system. These two systems serve as representatives of SPNs that do not satisfy the so-called Complete Resource Pooling (CRP) condition, and consequently exhibit a multidimensional State Space Collapse (SSC). Except in special cases, only mean queue lengths of such non-CRP systems is known in the literature. In this paper, we develop the Transform method to study the joint distribution of queue lengths in non-CRP systems. The key challenge is in solving an implicit functional equation involving the Laplace transform of the heavy-traffic limiting distribution. For the $\mathcal{N}$-system and a special case of an input-queued switch involving only three queues, we obtain the exact limiting heavy-traffic joint distribution in terms of a linear combination of two iid exponentials. For the general $n\times n$ input-queued switch that has $n^2$ queues, under a conjecture on uniqueness of the solution of the functional equation, we obtain an exact joint distribution of the heavy-traffic limiting queue-lengths in terms of a non-linear combination of $2n$ iid exponentials.