论文标题

带有辅助信息的肺组织基于CNN的分类框架

CNN-based Classification Framework for Lung Tissues with Auxiliary Information

论文作者

Hu, Huafeng, Ye, Ruijie, Thiyagalingam, Jeyarajan, Coenen, Frans, Su, Jionglong

论文摘要

间质性肺部疾病是一大批以不同程度的肺泡炎和肺纤维化为特征的异质性疾病。准确地诊断这些疾病对于制定治疗计划具有显着的指导价值。尽管以前的工作在分类间隙肺部疾病方面取得了令人印象深刻的结果,但仍有提高这些技术准确性的空间,主要是为了增强自动决策。为了提高分类精度,我们的研究提出了一个带有辅助信息的基于卷积神经网络的框架。首先,通过重新缩放Hounsfield单元中的原始图像,添加了ILD图像。其次,修改的CNN模型用于为每个组织产生分类概率的载体。第三,输入图像的位置信息,包括在某些位置在CT扫描中不同疾病的发生频率组成,用于计算位置权重向量。最后,使用两个向量之间的Hadamard产品用于为预测产生决策向量。与最先进的方法相比,使用公开可用的ILD数据库的结果显示了使用不同的辅助信息预测这些数据的潜力。

Interstitial lung diseases are a large group of heterogeneous diseases characterized by different degrees of alveolitis and pulmonary fibrosis. Accurately diagnosing these diseases has significant guiding value for formulating treatment plans. Although previous work has produced impressive results in classifying interstitial lung diseases, there is still room for improving the accuracy of these techniques, mainly to enhance automated decision-making. In order to improve the classification precision, our study proposes a convolutional neural networks-based framework with auxiliary information. Firstly, ILD images are added with their medical information by re-scaling the original image in Hounsfield Units. Secondly, a modified CNN model is used to produce a vector of classification probability for each tissue. Thirdly, location information of the input image, consisting of the occurrence frequencies of different diseases in the CT scans on certain locations, is used to calculate a location weight vector. Finally, the Hadamard product between two vectors is used to produce a decision vector for the prediction. Compared to the state-of-the-art methods, the results using a publicly available ILD database show the potential of predicting these using different auxiliary information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源