论文标题

神经间隔经过特征选择的生存回归

Neural interval-censored survival regression with feature selection

论文作者

Meixide, Carlos García, Matabuena, Marcos, Abraham, Louis, Kosorok, Michael R.

论文摘要

生存分析是生物医学研究中重点的基本领域,特别是在个性化医学的背景下。这种突出是由于大型和高维数据集(例如OMICS和医疗图像数据)的普遍性增加所致。但是,有关非线性回归算法和间隔审查的可变选择技术的文献是有限的或不存在的,尤其是在神经网络的背景下。我们的目标是引入一个针对间隔经过审核的回归任务量身定制的新型预测框架,该框架植根于加速故障时间(AFT)模型。我们的策略包括两个关键组成部分:i)一个可变选择阶段利用稀疏神经网络体系结构的最新进展,ii)针对预测间隔响应的回归模型。为了评估我们的新算法的性能,我们通过数值实验和现实世界应用进行了全面的评估,这些应用程序涵盖了与糖尿病和体育活动有关的情况。我们的结果表现优于传统的船尾算法,尤其是在具有非线性关系的场景中。

Survival analysis is a fundamental area of focus in biomedical research, particularly in the context of personalized medicine. This prominence is due to the increasing prevalence of large and high-dimensional datasets, such as omics and medical image data. However, the literature on non-linear regression algorithms and variable selection techniques for interval-censoring is either limited or non-existent, particularly in the context of neural networks. Our objective is to introduce a novel predictive framework tailored for interval-censored regression tasks, rooted in Accelerated Failure Time (AFT) models. Our strategy comprises two key components: i) a variable selection phase leveraging recent advances on sparse neural network architectures, ii) a regression model targeting prediction of the interval-censored response. To assess the performance of our novel algorithm, we conducted a comprehensive evaluation through both numerical experiments and real-world applications that encompass scenarios related to diabetes and physical activity. Our results outperform traditional AFT algorithms, particularly in scenarios featuring non-linear relationships.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源