论文标题

DeepRecon:通过结构特异性生成方法,连接2D心脏分割和3D体积重建

DeepRecon: Joint 2D Cardiac Segmentation and 3D Volume Reconstruction via A Structure-Specific Generative Method

论文作者

Chang, Qi, Yan, Zhennan, Zhou, Mu, Liu, Di, Sawalha, Khalid, Ye, Meng, Zhangli, Qilong, Kanski, Mikael, Aref, Subhi Al, Axel, Leon, Metaxas, Dimitris

论文摘要

关节2D心脏分割和3D体积重建是建立统计心脏解剖模型的基础,并了解运动模式的功能机制。但是,由于CINE MR和高主体间方差的平面分辨率低,精确分割心脏图像并重建3D体积是具有挑战性的。在这项研究中,我们提出了一个基于潜在空间的端到端框架DeepRecon,该框架产生了多个临床上基本的结果,包括准确的图像分割,合成高分辨率3D图像和3D重建体积。我们的方法确定了Cine图像的最佳潜在表示,其中包含心脏结构的准确语义信息。特别是,我们的模型共同生成具有准确的语义信息的合成图像,并使用最佳潜在表示对心脏结构进行分割。我们进一步探索了通过不同的潜在空间操纵策略对3D形状重建和4D运动模式进行适应的下游应用。同时产生的高分辨率图像具有高分辨率的价值,以评估心脏形状和运动。经验性结果。实验结果表明,我们的方法在多个前部的有效性,包括2D分离,包括2D分离,3D ReponStation totation Sotition dotits sotiations dattions dotate Sotions 4D 4D 4D 4D运动。

Joint 2D cardiac segmentation and 3D volume reconstruction are fundamental to building statistical cardiac anatomy models and understanding functional mechanisms from motion patterns. However, due to the low through-plane resolution of cine MR and high inter-subject variance, accurately segmenting cardiac images and reconstructing the 3D volume are challenging. In this study, we propose an end-to-end latent-space-based framework, DeepRecon, that generates multiple clinically essential outcomes, including accurate image segmentation, synthetic high-resolution 3D image, and 3D reconstructed volume. Our method identifies the optimal latent representation of the cine image that contains accurate semantic information for cardiac structures. In particular, our model jointly generates synthetic images with accurate semantic information and segmentation of the cardiac structures using the optimal latent representation. We further explore downstream applications of 3D shape reconstruction and 4D motion pattern adaptation by the different latent-space manipulation strategies.The simultaneously generated high-resolution images present a high interpretable value to assess the cardiac shape and motion.Experimental results demonstrate the effectiveness of our approach on multiple fronts including 2D segmentation, 3D reconstruction, downstream 4D motion pattern adaption performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源