论文标题
隐式正则化或隐式条件?高维的SGD的确切风险轨迹
Implicit Regularization or Implicit Conditioning? Exact Risk Trajectories of SGD in High Dimensions
论文作者
论文摘要
随机梯度下降(SGD)是现代机器学习的支柱,是各种问题的首选优化算法。尽管SGD的经验成功通常归因于其计算效率和有利的概括行为,但两者都可以很好地理解和解散它们仍然是一个开放的问题。即使在简单的凸二次问题的设置中,最坏情况分析也给SGD的渐近收敛率提供了不比全批梯度下降(GD)更好的,而SGD的所谓隐式正则效应缺乏精确的解释。在这项工作中,我们研究了高维凸四倍体学上多通sgd的动力学,并建立了与随机微分方程的渐近等效性,我们称之为同质化的随机梯度下降(HSGD),我们的解决方案我们以volterra集成方程的方式明确表征了解决方案。这些结果为学习和风险轨迹提供了精确的公式,该公式揭示了隐性条件的机制,该机制解释了SGD相对于GD的效率。我们还证明,来自SGD的噪声会对泛化性能产生负面影响,从而排除在这种情况下任何类型的隐式正则化的可能性。最后,我们展示了如何适应HSGD形式主义,包括流媒体SGD,这使我们能够相对于流媒体SGD(Bootstrap风险)对多通SGD的多余风险产生确切的预测。
Stochastic gradient descent (SGD) is a pillar of modern machine learning, serving as the go-to optimization algorithm for a diverse array of problems. While the empirical success of SGD is often attributed to its computational efficiency and favorable generalization behavior, neither effect is well understood and disentangling them remains an open problem. Even in the simple setting of convex quadratic problems, worst-case analyses give an asymptotic convergence rate for SGD that is no better than full-batch gradient descent (GD), and the purported implicit regularization effects of SGD lack a precise explanation. In this work, we study the dynamics of multi-pass SGD on high-dimensional convex quadratics and establish an asymptotic equivalence to a stochastic differential equation, which we call homogenized stochastic gradient descent (HSGD), whose solutions we characterize explicitly in terms of a Volterra integral equation. These results yield precise formulas for the learning and risk trajectories, which reveal a mechanism of implicit conditioning that explains the efficiency of SGD relative to GD. We also prove that the noise from SGD negatively impacts generalization performance, ruling out the possibility of any type of implicit regularization in this context. Finally, we show how to adapt the HSGD formalism to include streaming SGD, which allows us to produce an exact prediction for the excess risk of multi-pass SGD relative to that of streaming SGD (bootstrap risk).