论文标题
部分可观测时空混沌系统的无模型预测
HyperImpute: Generalized Iterative Imputation with Automatic Model Selection
论文作者
论文摘要
考虑在数据集中插入缺失值的问题。一方面,使用迭代插补的一方面,传统的方法可以直接从学习条件分布的简单性和可定制性中受益,但对每个变量的适当模型规范都遭受了实际要求。另一方面,使用深层生成建模的最新方法受益于神经网络功能近似器的学习能力和效率,但通常很难优化和依赖更强的数据假设。在这项工作中,我们研究了一种嫁给两者优势的方法:我们提出了 *Hyperigtute *,这是一种适应性和自动配置柱状模型及其超级参数的广义迭代插补框架。实际上,我们为开箱即用的学习者,优化者,模拟器和可扩展的接口提供具体的实现。从经验上讲,我们通过在各种公共数据集上通过全面的实验和敏感性进行了研究,并证明了其相对于强大的基准套件产生准确的归精的能力。与最近的工作相反,我们认为我们的发现构成了对迭代归档范式的强烈辩护。
Consider the problem of imputing missing values in a dataset. One the one hand, conventional approaches using iterative imputation benefit from the simplicity and customizability of learning conditional distributions directly, but suffer from the practical requirement for appropriate model specification of each and every variable. On the other hand, recent methods using deep generative modeling benefit from the capacity and efficiency of learning with neural network function approximators, but are often difficult to optimize and rely on stronger data assumptions. In this work, we study an approach that marries the advantages of both: We propose *HyperImpute*, a generalized iterative imputation framework for adaptively and automatically configuring column-wise models and their hyperparameters. Practically, we provide a concrete implementation with out-of-the-box learners, optimizers, simulators, and extensible interfaces. Empirically, we investigate this framework via comprehensive experiments and sensitivities on a variety of public datasets, and demonstrate its ability to generate accurate imputations relative to a strong suite of benchmarks. Contrary to recent work, we believe our findings constitute a strong defense of the iterative imputation paradigm.