论文标题
在随机环境中分支布朗运动的最大位置过程的不变性原理
Invariance principle for the maximal position process of branching Brownian motion in random environment
论文作者
论文摘要
在本文中,我们研究了在随机空间环境中分支布朗运动的最大位置过程。随机环境由进程$ξ= \ left(ξ(x)\右)_ {x \ in \ mathbb {r}} $满足某些条件。我们表明,最大位置$ m_t $的粒子在时间时活着$ t $满足了大量的强大法律和一项退火不变原理。
In this paper we study the maximal position process of branching Brownian motion in random spatial environment. The random environment is given by a process $ξ= \left(ξ(x)\right)_{x\in\mathbb{R}}$ satisfying certain conditions. We show that the maximum position $M_t$ of particles alive at time $t$ satisfies a quenched strong law of large numbers and an annealed invariance principle.