论文标题

无监督的运动运动检测,用于部分分段的3D形状集合

Unsupervised Kinematic Motion Detection for Part-segmented 3D Shape Collections

论文作者

Xu, Xianghao, Ruan, Yifan, Sridhar, Srinath, Ritchie, Daniel

论文摘要

制造物体的3D模型对于填充虚拟世界和视觉和机器人技术的合成数据很重要。为了最有用,应该阐明此类对象:它们的部分应在与之互动时移动。尽管存在铰接式对象数据集,但创建它们是劳动密集型的。基于学习的零件动作预测可以有所帮助,但是所有现有方法都需要带注释的培训数据。在本文中,我们提出了一种无监督的方法,用于发现部分分段的3D形状集合中的铰接运动。我们的方法是基于一个概念,我们称之为封闭类别:对物体部分的任何有效表达都应将对象保留在同一语义类别中(例如,椅子保持椅子)。我们使用一种算法来实现此概念,该算法优化了形状的零件运动参数,从而可以转换为集合中的其他形状。我们通过使用Partnet-Mobility数据集重新发现零件动作来评估我们的方法。对于几乎所有形状类别,我们方法的预测运动参数在地面真实注释方面的错误较低,表现优于两种监督运动预测方法。

3D models of manufactured objects are important for populating virtual worlds and for synthetic data generation for vision and robotics. To be most useful, such objects should be articulated: their parts should move when interacted with. While articulated object datasets exist, creating them is labor-intensive. Learning-based prediction of part motions can help, but all existing methods require annotated training data. In this paper, we present an unsupervised approach for discovering articulated motions in a part-segmented 3D shape collection. Our approach is based on a concept we call category closure: any valid articulation of an object's parts should keep the object in the same semantic category (e.g. a chair stays a chair). We operationalize this concept with an algorithm that optimizes a shape's part motion parameters such that it can transform into other shapes in the collection. We evaluate our approach by using it to re-discover part motions from the PartNet-Mobility dataset. For almost all shape categories, our method's predicted motion parameters have low error with respect to ground truth annotations, outperforming two supervised motion prediction methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源