论文标题
对控制建模的深度学习和确定性算法的比较
Comparison of Deep Learning and Deterministic Algorithms for Control Modeling
论文作者
论文摘要
控制非线性动力学在各个工程领域都会出现。与基准方法相比,我们提出了使用物理信息的神经网络(PINN)对强制范德尔系统控制进行建模的努力,包括理想化的非线性进料(FF)控制,线性反馈控制(FB)和FeedForward-Plus-plus-plus-fepedback(C)。目的是在范德尔系统的状态空间中实施圆形轨迹。设计的基准问题用于测试不同控制器的行为差异,然后研究各种非线性范围的受控方案和系统。所有方法均显示出伴随任意初始化点的简短初始化。 FF控制成功地收敛到所需的轨迹,而PINN根据相肖像,对高阶术语观察到较高的随机性执行良好的控制。相反,组合控制失败。不同的轨迹振幅表明,FF,FB和组合控制都因统一非线性阻尼增益而失败。传统的控制方法显示高阶术语的强大波动。对于某些不同的非线性,Pinn未能实现所需的轨迹,而不是在小半径阶段“被困”,但FB成功实现了控件。 Pinn通常显示出不同的靶向轨迹的相对误差较低。然而,与传统的控制理论方法相比,PINN显然显示出更高的计算负担,与基准为基准的非线性非线性进料控制相比,控制时间至少超过30倍。本手稿为确定性和机器学习方法提出了一项针对未来控制器就业的全面比较研究。
Controlling nonlinear dynamics arise in various engineering fields. We present efforts to model the forced van der Pol system control using physics-informed neural networks (PINN) compared to benchmark methods, including idealized nonlinear feedforward (FF) control, linearized feedback control (FB), and feedforward-plus-feedback combined (C). The aim is to implement circular trajectories in the state space of the van der Pol system. A designed benchmark problem is used for testing the behavioral differences of the disparate controllers and then investigating controlled schemes and systems of various extents of nonlinearities. All methods exhibit a short initialization accompanying arbitrary initialization points. FF control successfully converges to the desired trajectory, and PINN executes good controls with higher stochasticity observed for higher-order terms based on the phase portraits. In contrast, combined control failed. Varying trajectory amplitudes revealed that FF, FB, and combined control all fail for unity nonlinear damping gain. Traditional control methods display a robust fluctuation for higher-order terms. For some various nonlinearities, PINN failed to implement the desired trajectory instead of becoming "trapped" in the phase of a small radius, yet FB successfully implemented controls. PINN generally exhibits lower relative errors for varying targeted trajectories. However, PINN also shows evidently higher computational burden compared with traditional control theory methods, with at least more than 30 times longer control time compared with benchmark idealized nonlinear feed-forward control. This manuscript proposes a comprehensive comparative study for future controller employment considering deterministic and machine learning approaches.