论文标题
通过顺序游戏追求多个子空间的判别性表示
Pursuit of a Discriminative Representation for Multiple Subspaces via Sequential Games
论文作者
论文摘要
我们考虑在高维空间中学习判别性表示的问题,并在多个低维线性子空间上或周围支持分布。也就是说,我们希望计算数据的线性注射映射,以便该功能位于多个正交子空间上。我们没有使用多个PCAS来处理这个学习问题,而是使用最近提出的用于学习一般低维基符号的判别和生成性表示的闭环转录(CTRL)框架作为顺序游戏。我们证明,游戏的平衡解决方案确实提供了正确的表示。我们的方法通过表明可以证明使用现代表示学习工具包可以解决子空间学习问题,从而将学习子空间的经典方法与现代深度学习实践统一。此外,在线性子空间的重要情况下,我们的工作为CTRL框架提供了第一个理论理由。我们以令人信服的经验证据来支持我们的理论发现。我们还将顺序的游戏公式推广到更通用的表示学习问题。我们的代码,包括容易复制实验结果的方法,在GitHub上公开可用。
We consider the problem of learning discriminative representations for data in a high-dimensional space with distribution supported on or around multiple low-dimensional linear subspaces. That is, we wish to compute a linear injective map of the data such that the features lie on multiple orthogonal subspaces. Instead of treating this learning problem using multiple PCAs, we cast it as a sequential game using the closed-loop transcription (CTRL) framework recently proposed for learning discriminative and generative representations for general low-dimensional submanifolds. We prove that the equilibrium solutions to the game indeed give correct representations. Our approach unifies classical methods of learning subspaces with modern deep learning practice, by showing that subspace learning problems may be provably solved using the modern toolkit of representation learning. In addition, our work provides the first theoretical justification for the CTRL framework, in the important case of linear subspaces. We support our theoretical findings with compelling empirical evidence. We also generalize the sequential game formulation to more general representation learning problems. Our code, including methods for easy reproduction of experimental results, is publically available on GitHub.