论文标题

稀疏的拉格朗日多映射调节模拟甲烷/空气中升高的甲烷/空气中的稀疏多映射调节模拟

Sparse-Lagrangian Multiple Mapping Conditioning Simulations of Lifted Jet Diffusion Flames of Methane/Air in a Vitiated Co-flow

论文作者

Sharma, Eshan

论文摘要

进行了在热蛋白的co流中稳定的部分结构的,湍流的射流扩散火焰的数值模拟。对于自动燃烧火焰,对火焰稳定的准确预测取决于在火焰底部的湍流传输和化学动力学之间的微妙平衡,对传统的湍流燃烧模型构成了巨大挑战。多个映射条件/大涡模拟(MMC-LE)是一种建模湍流化学相互作用的有前途的工具,已成功地用于模拟涉及气态,液体和固体燃料的各种燃烧应用。 MMC-LE是一种完整的\ gls {PDF}方法,其中MMC扮演混合模型的作用,模拟分子混合现象。 MMC试图通过在独立的成分样参考空间中定位混合来产生准确的分子混合。由于这种强制性的局部混合,因此可以将随机拉格朗日颗粒的稀疏分布用于蒙特 - 卡洛的蒙特 - 卡洛模拟PDF方程。在本研究中,我们采用MMC-LE来研究UC Berkeley加州大学甲烷/空气火焰。本研究中使用了每10个Eulerian有限体积细胞的1个粒子稀疏分辨率,该细胞与常规运输的PDF方法相比提供了更便宜的计算费用。基于GRI 3.0的骨骼化学机制,包含30种和184种反应,代表甲烷的氧化。分子混合的时间尺度是使用最近发表的\ textit {dyn-aiso}模型对其进行自动征用配置中的性能进行建模的。

Numerical simulations of a partially-premixed, turbulent jet diffusion flame stabilised in a hot vitiated co-flow are performed. For auto-igniting flames, an accurate prediction of flame stabilisation, which depends on a delicate balance between turbulent transport and chemical kinetics at the flame base, poses an enormous challenge to conventional turbulent combustion models. Multiple mapping conditioning/large eddy simulation (MMC-LES), a promising tool for modelling turbulence-chemistry interactions, has been successfully applied to simulate a variety of combustion applications involving gaseous, liquid, and solid fuels. MMC-LES is a full \gls{PDF} method where MMC plays the role of the mixing model, emulating molecular mixing phenomenon. MMC attempts to produce accurate molecular mixing by localising mixing in an independent, composition-like reference space. Due to this enforced localised mixing, a sparse distribution of stochastic Lagrangian particles for may be used for the Monte-Carlo simulation of the sub-grid joint-composition PDF equation. In the present study, we employ MMC-LES to investigate the auto-igniting methane/air flames of UC Berkeley. A sparse resolution of 1 particle per 10 Eulerian finite-volume cells is used in this study, which offers much cheaper computing expenses in comparison to the conventional transported PDF approach. A skeletal chemical mechanism, based on GRI 3.0, containing 30 species and 184 reactions, represents the oxidation of methane. The time-scale of molecular mixing is modelled using the recently published \textit{dyn-aISO} model to assess its performance in an auto-igniting configuration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源