论文标题

差异性细菌群的代数特性

Algebraic properties of the group of germs of diffeomorphisms

论文作者

Cerveau, Dominique, Déserti, Julie

论文摘要

我们建立了组$ \ mathrm {diff}(\ mathbb {c}^n,0)$的一些代数属性。例如,我们描述了$ \ mathrm {diff}(\ mathbb {c}^n,0)$的换向器,但也证明了$ \ mathrm {diff}的任何有限生成的亚组因此,我们获得了嵌入$ \ mathrm {diff}(\ mathbb {c}^n,0)$的组的一些约束。我们表明,$ \ wideHat {\ mathrm {diff}}(\ mathbb {c}^n,0)$是一个霍普里安组,而$ \ mathrm {diff}(\ mathbb {c}^n,0)$不是共求人。我们以$ \ wideHat {\ mathrm {diff}}}(\ MathBb {C},0)$和$ \ MathRM {diff}(\ MathBb {c},0)$的自动形态组的描述结束。

We establish some algebraic properties of the group $\mathrm{Diff}(\mathbb{C}^n,0)$ of germs of analytic diffeomorphisms of $\mathbb{C}^n$, and its formal completion $\widehat{\mathrm{Diff}}(\mathbb{C}^n,0)$. For instance we describe the commutator of $\mathrm{Diff}(\mathbb{C}^n,0)$, but also prove that any finitely generated subgroup of $\mathrm{Diff}(\mathbb{C}^n,0)$ is residually finite; we thus obtain some constraints of groups that embed into $\mathrm{Diff}(\mathbb{C}^n,0)$. We show that $\widehat{\mathrm{Diff}}(\mathbb{C}^n,0)$ is an Hopfian group, and that $\mathrm{Diff}(\mathbb{C}^n,0)$ and $\widehat{\mathrm{Diff}}(\mathbb{C}^n,0)$ are not co-Hopfian. We end by the description of the automorphisms groups of $\widehat{\mathrm{Diff}}(\mathbb{C},0)$, and $\mathrm{Diff}(\mathbb{C},0)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源